20 resultados para detoxification

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This economic evaluation was part of the Australian National Evaluation of Pharmacotherapies for Opioid Dependence (NEPOD) project. Data from four trials of heroin detoxification methods, involving 365 participants, were pooled to enable a comprehensive comparison of the cost-effectiveness of five inpatient and outpatient detoxification methods. This study took the perspective of the treatment provider in assessing resource use and costs. Two short-term outcome measures were used-achievement of an initial 7-day period of abstinence, and entry into ongoing post-detoxification treatment. The mean costs of the various detoxification methods ranged widely, from AUD $491 (buprenorphine-based outpatient); to AUD $605 for conventional outpatient; AUD $1404 for conventional inpatient; AUD $1990 for rapid detoxification under sedation; and to AUD $2689 for anaesthesia per episode. An incremental cost-effectiveness analysis was carried out using conventional outpatient detoxification as the base comparator. The buprenorphine-based outpatient detoxification method was found to be the most cost-effective method overall, and rapid opioid detoxification under sedation was the most costeffective inpatient method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The albA gene from Klebsiella oxytoca encodes a protein that binds albicidin phytotoxins and antibiotics with high affinity. Previously, it has been shown that shifting pH from 6 to 4 reduces binding activity of AlbA by about 30%, indicating that histidine residues might be involved in substrate binding. In this study, molecular analysis of the albA coding region revealed sequence discrepancies with the albA sequence reported previously, which were probably due to sequencing errors. The albA gene was subsequently cloned from K oxytoca ATCC 13182(T) to establish the revised sequence. Biochemical and molecular approaches were used to determine the functional role of four histidine residues (His(78), HiS(125), HiS(141) and His(189)) in the corrected sequence for AlbA. Treatment of AlbA with diethyl pyrocarbonate (DEPC), a histidine-specific alkylating reagent, reduced binding activity by about 95%. DEPC treatment increased absorbance at 240-244 nm by an amount indicating conversion to N-carbethoxyhistidine of a single histidine residue per AlbA molecule. Pretreatment with albicidin protected AlbA against modification by DEPC, with a 1 : 1 molar ratio of albicidin to the protected histidine residues. Based on protein secondary structure and amino acid surface probability indices, it is predicted that HiS125 might be the residue required for albicidin binding. Mutation of HiS125 to either alanine or leucine resulted in about 32% loss of binding activity, and deletion of HiS125 totally abolished binding activity. Mutation of HiS125 to arginine and tyrosine had no effect. These results indicate that HiS125 plays a key role either in an electrostatic interaction between AlbA and albicidin or in the conformational dynamics of the albicidin-binding site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: To determine the 12-month prevalence of substance-use disorders and psychological morbidity in an Australian arrestee population. Design: Cross-sectional descriptive study. Participants and setting: 288 police arrestees at the Brisbane City Police Watch House in February and March 2001. Outcome measures: Prevalence of drug and alcohol disorders; psychological caseness according to the 28-item General Health Questionnaire; demographics and index offences. Results: 86% of the arrestees had at least one substance-use disorder; most had multiple disorders. More than 80% were substance dependent. The predominant substances used were amphetamines, marijuana, opioids and alcohol. 82% of the men and 94% of the women were suffering significant psychological distress. Conclusions: Development of services for detoxification and treatment of this population is a pressing need. The findings provide crucial information for the planning and implementation of drug courts and court diversion systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Periodic public concern about heroin use has been a major driver of Australian drug policy in the four decades since heroin use was first reported. The number of heroin-dependent people in Australia has increased from several hundreds in the late 1960s to around 100000 by the end of the 1990s. In this paper I do the following: (1) describe collaborative research on heroin dependence that was undertaken between 1991 and 2001 by researchers at the National Drug and Alcohol Research Centre: (2) discuss the contribution that this research may have made to the formulation of policies towards the treatment of heroin dependence during a period when the policy debate crystallized around the issue of whether or not Australia should conduct a controlled trial of heroin prescription; and (3) reflect on the relationships between research and policy-making in the addictions field, specifically on the roles of investigator-initiated and commissioned research, the interface between researchers, funders and policymakers: and the need to be realistic about the likely impact of research on policy and practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cyclotides are the largest family of naturally occurring circular proteins. The mechanism by which the termini of these gene-encoded proteins are linked seamlessly with a peptide bond to form a circular backbone is unknown. Here we report cyclotide-encoding cDNA sequences from the plant Viola odorata and compare them with those from an evolutionarily distinct species, Oldenlandia affinis. Individual members of this multigene family encode one to three mature cyclotide domains. These domains are preceded by N-terminal repeat regions (NTRs) that are conserved within a plant species but not between species. We have structurally characterized peptides corresponding to these NTRs and show that, despite them having no sequence homology, they form a structurally conserved alpha-helical motif. This structural conservation suggests a vital role for the NTR in the in vivo folding, processing, or detoxification of cyclotide domains from the precursor protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: To examine the health-related quality of life of alcohol-dependent patients across a 12-week cognitive behaviour treatment (CBT) program and identify whether the patient selection of the anticraving medication naltrexone further enhanced these outcomes. Method: One hundred and thirty-six consecutive alcohol-dependent subjects voluntarily participated and were offered naltrexone, of which 73 (54%) participants declined medication. A matched design was used. Of the 136 subjects, 86 (43 naltrexone and CBT; 43 CBT only) could be individually matched (blind to outcome measures) for gender, age, prior alcohol detoxification and dependence severity. Measures of health status and mental health wellbeing included the Rand Corporation Medical Outcomes Short Form 36 Health Survey (SF-36) and the General Health Questionnaire (GHQ-28). Results: Pre-treatment, all had SF-36 and GHQ-28 scores markedly below national norms. Post-treatment, significant improvement in seven of the eight SF-36 subscales and all of the GHQ-28 subscales occurred, approximating national normative levels. Patients in the CBT + naltrexone group were significantly more likely to have increased days abstinent (p = 0.002) and to complete the program abstinent (p = 0.051). The adjunctive use of naltrexone did not provide additional benefit as reflected in SF-36 and GHQ-28 scores, beyond CBT alone. Conclusions: Patients who completed the CBT-based treatment program reported significant improvements in self-reported health status (SF-36) and wellbeing (GHQ-28). The adjunctive use of naltrexone demonstrated no additional improvement in these measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims The study estimated serious adverse event (SAE) rates among entrants to pharmacotherapies for opioid dependence, during treatment and after leaving treatment. Design A longitudinal study based on data from 12 trials included in the Australian National Evaluation of Pharmacotherapies for Opioid Dependence (NEPOD). Participants and settings A total of 1.244 heroin users and methadone patients treated in hospital, community and GP settings. Intervention Six trials included detoxification; all included treatment with methadone, buprenorphine, levo-alpha-acetyl-methadol (LAAM) or naltrexone. Findings During 394 person-years of observation, 79 SAEs of 28 types were recorded. Naltrexone participants experienced 39 overdoses per 100 person-years after leaving treatment (44% occurred within 2 weeks after stopping naltrexone). This was eight times the rate recorded among participants who left agonist treatment. Rates of all other SAEs were similar during treatment versus out of treatment, for both naltrexone-treated and agonist-treated participants. Five deaths occurred, all among participants who had left treatment, at a rate of six per 100 person-years. Total SAE rates during naltrexone and agonist treatments were similar (20, 14 per 100 person-years, respectively). Total SAE and death rates observed among participants who had left treatment were three and 19 times the corresponding rates during treatment. Conclusions Individuals who leave pharmacotherapies for opioid dependence experience higher overdose and death rates compared with those in treatment. This may be due partly to a participant self-selection effect rather than entirely to pharmacotherapy being protective. Clinicians should alert naltrexone treatment patients in particular about heroin overdose risks. Duty of care may extend beyond cessation of dosing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to conduct a cost - effectiveness analysis of detoxification from heroin using buprenorphine in a specialist clinic versus a shared care setting. A randomized controlled trial was conducted with a total of 115 heroin-dependent patients receiving a 5-day treatment regime of buprenorphine. The specialist clinic was a community-based treatment agency in inner-city Sydney. Shared care involved treatment by a general practitioner supplemented by weekend dispensing and some concurrent counselling at the specialist clinic. Quanti. cation of resource use was limited to inputs for treatment provision. The primary outcome measure used in the economic analysis was the proportion of each group that completed detoxification and achieved an initial 7-day period of abstinence. Buprenorphine detoxification in the shared care setting was estimated to be $24 more expensive per patient than treatment at the clinic, which had an average treatment cost of $332 per patient. Twenty-three per cent of the shared care patients and 22% of the clinic patients reported no opiate use during the withdrawal period. These results suggest that the provision of buprenorphine treatment for heroin dependence in shared care and clinic appear to be equally cost - effective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions of mercury(II) with the microtubule network of cells may lead to genotoxicity. Complexation of mercury(II) with EDTA is currently being discussed for its employment in detoxification processes of polluted sites. This prompted us to re-evaluate the effects of such complexing agents on certain aspects of mercury toxicity, by examining the influences of mercury(H) complexes on tubulin assembly and kinesin-driven motility of microtubules. The genotoxic effects were studied using the micronucleus assay in V79 Chinese hamster fibroblasts. Mercury(II) complexes with EDTA and related chelators interfered dose-dependently with tubulin assembly and microtubule motility in vitro. The no-effect-concentration for assembly inhibition was 1muM of complexed Hg(II), and for inhibition of motility it was 0.05 muM, respectively. These findings are supported on the genotoxicity level by the results of the micronucleus assay, with micronuclei being induced dose-dependently starting at concentrations of about 0.05 muM of complexed Hg(II). Generally, the no-effect-concentrations for complexed mercury(II) found in the cell-free systems and in cellular assays (including the micronucleus test) were identical with or similar to results for mercury tested in the absence of chelators. This indicates that mercury(II) has a much higher affinity to sulfhydryls of cytoskeletal proteins than to this type of complexing agents. Therefore, the suitability of EDTA and related compounds for remediation of environmental mercury contamination or for other detoxification purposes involving mercury has to be questioned. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acacia angustissima has been proposed as a protein supplement in countries where low quality forages predominate. A number of non-protein amino acids have been identified in the leaves of A. angustissima and these have been linked to toxicity in ruminants. The non-protein amino acid 4-n-acetyl-2,4-diaminobutyric acid (ADAB) has been shown to be the major amino acid in the leaves of A. angustissima. The current study aimed to identify micro-organisms from the rumen environment capable of degrading ADAB by using a defined rumen-simulating media with an amino acid extract from A. angustissima. A mixed enrichment culture was obtained that exhibited substantial ADAB-degrading ability. Attempts to isolate an ADAB-degrading micro-organism were carried out, however no isolates were able to degrade ADAB in pure culture. This enrichment culture was also able to degrade the non-protein amino acids diaminobutyric acid (DABA) and diaminopropionic acid (DAPA) which have structural similarities to ADAB. Two isolates were obtained which could degrade DAPA. One isolate is a novel Grain-positive rod (strain LPLR3) which belongs to the Firmicutes and is not closely related to any previously isolated bacterium. The other isolate is strain LPSR1 which belongs to the Gammaproteobacteria and is closely related (99.93% similar) to Klebsiella pneumoniae subsp. ozaenae. The studies demonstrate that the rumen is a potential rich source of undiscovered micro-organisms which have novel capacities to degrade plant secondary compounds. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative metabolism of bilirubin (BR) - a breakdown product of haem with cytoprotective and toxic properties - is an important route of detoxification in addition to glucuronidation. The major enzyme(s) involved in this oxidative degradation are not known. In this paper, we present evidence for a major role of the hepatic cytochrome P450 2A5 (Cyp2a5) in BR degradation during cadmium intoxication, where the BR levels are elevated following induction of haem oxygenase-1 (HO-1). Treatment of DBA/2J mice with CdCl2 induced both the Cyp2a5 and HO-1, and increased the microsomal BR degradation activity. By contrast, the total cytochrome P450 (CYP) content and the expression of Cyp1a2 were down-regulated by the treatment. The induction of the HO-1 and Cyp2a5 was substantial at the mRNA, protein and enzyme activity levels. In each case, the up-regulation of HO-1 preceded that of Cyp2a5 with a 5-10 h interval. BR totally inhibited the microsomal Cyp2a5-dependent coumarin hydroxylase activity, with an IC50 approximately equal to the substrate concentration. The 7-methoxyresorufin 7-O-demethylase (MROD) activity, catalyzed mainly by the Cyp1a2, was inhibited up to 36% by BR. The microsomal BR degradation was inhibited by coumarin and a monoclonal antibody against the Cyp2a5 by about 90%. Furthermore, 7-methoxyresorufin, a substrate for the Cyp1a2, inhibited BR degradation activity by approximately 20%. In sum, the results strongly suggest a major role for Cyp2a5 in the oxidative degradation of BR. Secondly, the coordinated up-regulation of the HO-1 and Cyp2a5 during Cd-mediated injury implicates a network of enzyme systems in the maintenance of balancing BR production and elimination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a first step toward understanding the molecular basis of pineapple fruit development, a sequencing project was initiated to survey a range of expressed sequences from green unripe and yellow ripe fruit tissue. A highly abundant metallothionein transcript was identified during library construction, and was estimated to account for up to 50% of all EST library clones. Library clones with metallothionein subtracted were sequenced, and 408 unripe green and 1140 ripe yellow edited EST clone sequences were retrieved. Clone redundancy was high, with the combined 1548 clone sequences clustering into just 634 contigs comprising 191 consensus sequences and 443 singletons. Half of the EST clone sequences clustered within 13.5% and 9.3% of contigs from green unripe and yellow ripe libraries, respectively, indicating that a small subset of genes dominate the majority of the transcriptome. Furthermore, sequence cluster analysis, northern analysis, and functional classification revealed major differences between genes expressed in the unripe green and ripe yellow fruit tissues. Abundant genes identified from the green fruit include a fruit bromelain and a bromelain inhibitor. Abundant genes identified in the yellow fruit library include a MADS box gene, and several genes normally associated with protein synthesis, including homologues of ribosomal L10 and the translation factors SUI1 and eIF5A. Both the green unripe and yellow ripe libraries contained high proportions of clones associated with oxidative stress responses and the detoxification of free radicals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidoreductase enzymes catalyze single- or multi-electron reduction/oxidation reactions of small molecule inorganic or organic substrates, and they are integral to a wide variety of biological processes including respiration, energy production, biosynthesis, metabolism, and detoxification. All redox enzymes require a natural redox partner such as an electron-transfer protein ( e. g. cytochrome, ferredoxin, flavoprotein) or a small molecule cosubstrate ( e. g. NAD(P)H, dioxygen) to sustain catalysis, in effect to balance the substrate/product redox half-reaction. In principle, the natural electron-transfer partner may be replaced by an electrochemical working electrode. One of the great strengths of this approach is that the rate of catalysis ( equivalent to the observed electrochemical current) may be probed as a function of applied potential through linear sweep and cyclic voltammetry, and insight to the overall catalytic mechanism may be gained by a systematic electrochemical study coupled with theoretical analysis. In this review, the various approaches to enzyme electrochemistry will be discussed, including direct and indirect ( mediated) experiments, and a brief coverage of the theory relevant to these techniques will be presented. The importance of immobilizing enzymes on the electrode surface will be presented and the variety of ways that this may be done will be reviewed. The importance of chemical modification of the electrode surface in ensuring an environment conducive to a stable and active enzyme capable of functioning natively will be illustrated. Fundamental research into electrochemically driven enzyme catalysis has led to some remarkable practical applications. The glucose oxidase enzyme electrode is a spectacularly successful application of enzyme electrochemistry. Biosensors based on this technology are used worldwide by sufferers of diabetes to provide rapid and accurate analysis of blood glucose concentrations. Other applications of enzyme electrochemistry are in the sensing of macromolecular complexation events such as antigen - antibody binding and DNA hybridization. The review will include a selection of enzymes that have been successfully investigated by electrochemistry and, where appropriate, discuss their development towards practical biotechnological applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfonation is an important reaction in the metabolism of numerous xenobiotics, drugs, and endogenous compounds. A supergene family of enzymes called sulfotransferases (SULTs) catalyze this reaction. In most cases, the addition of a sulfonate moiety to a compound increases its water solubility and decreases its biological activity. However, many of these enzymes are also capable of bioactivating procarcinogens to reactive electrophiles. In humans three SULT families, SULT1, SULT2, and SULT4, have been identified that contain at least thirteen distinct members. SULTs have a wide tissue distribution and act as a major detoxification enzyme system in adult and the developing human fetus. Nine crystal structures of human cytosolic SULTs have now been determined, and together with site-directed mutagenesis experiments and molecular modeling, we are now beginning to understand the factors that govern distinct but overlapping substrate specificities. These studies have also provided insight into the enzyme kinetics and inhibition characteristics of these enzymes. The regulation of human SULTs remains as one of the least explored areas of research in the field, though there have been some recent advances on the molecular transcription mechanism controlling the individual SULT promoters. Interindividual variation in sulfonation capacity may be important in determining an individual's response to xenobiotics, and recent studies have begun to suggest roles for SULT polymorphism in disease susceptibility. This review aims to provide a summary of our present understanding of the function of human cytosolic sulfotransferases.